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Abstract

We describe a method to compute the lowest eigenvalues of the Maxwell operator in a periodic medium. We prove

that the Lánczos method applied to the inverse Maxwell operator provides a fast, robust and superconvergent algo-

rithm. We apply this method to the computation of the dispersion relations of a 2D photonic crystal.
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1. Introduction

Since Yablonovitch�s pioneering work [1] there has been considerable work in the investigation of the

optical properties of two- and three-dimensional (2D and 3D) photonic crystals. These media are expected

to provide new devices with functionalities similar to those obtained with current electronic devices. Elec-

tronic band gaps in semi conductors may have their counterpart in photonic crystals if these new structures

exhibit photonic band gaps, i.e., if there exist frequencies for which the propagation of light is impossible.
Whereas the crystalline periodicity of semiconductors yields electronic band gaps which readily fit with

most electronic applications, photonic crystals with periodicity of order 1 lm have to be constructed. Com-

puter softwares are therefore needed to simulate their properties, depending on the lattice symmetry and on

the distribution of the refractive index.
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Photonic gaps are expected to occur only in the lower part of the frequency spectrum of the eigenmodes.

It is therefore necessary to compute the first modes of the stationary Maxwell equations in a periodic

medium. This leads to an eigenvalue problem involving the so-called Maxwell operator. The periodicity

of the permittivity allows to reduce the equations in a form similar to the Bloch equations for electrons

in a periodic potential. For each Bloch vector k one gets an eigenvalue problem in the unit cell with par-
ticular boundary conditions which yields a discrete sequence of eigenvalues depending continuously on k.

When k runs over the Brillouin zone these eigenvalues fill up closed intervals of the positive real axis and the

complete spectrum is the union of these intervals. Photonic band gap occur when the spectrum does not

cover the positive axis.

The lowest eigenvalues of a symmetric operator can be computed by different methods: the Lánczos

method and the Rayleigh quotient method for instance (see [2–6]). The well-known MIT Photonic-Bands

(MPB) package is based on the Rayleigh quotient method [7]. However, these algorithms are difficult to

control in the case of the Maxwell operator because its spectrum is not bounded: for each Bloch vector
k the sequence of eigenvalues tends to infinity. This raises delicate questions as regards to the convergence

of the computed eigenvalues and eigenvectors.

This work is part of a project intended to develop an holographic method for a direct growth of 2D and

3D photonic crystals by chemical vapor deposition. The project is presented in [8] where an experimental

setup is described.

In this article, we concentrate on the theoretical and computational aspects linked to the description of

the eigenmodes in a 2D or 3D periodic photonic crystal. We present a method based on the iteration of the

inverse Maxwell operator. This inverse operator is bounded (more precisely compact) and it turns out that
estimates on the convergence of its largest eigenvalues can easily be obtained. The mere drawback of this

method relies in the inversion of the Maxwell operator which, however, can be handled without much dif-

ficulty. The advantage is that this method leads to fast computations: for instance the nth first modes re-

quire about 4n inverse Maxwell operator.

This article is organized as follows: in Section 2, we recall the mathematical framework of Maxwell

equations in a non-magnetic periodic medium. In Section 3, we introduce the method based on the iter-

ation of the inverse Maxwell operator. We discuss the convergence of the eigenvalues with respect to the

number of iterations which corresponds to the dimension of the Krylov space generated by the algo-
rithm. In Section 4, we present and we discuss numerical results obtained in the case of a 2D honeycomb

photonic crystal.
2. Maxwell equations in a periodic medium

2.1. The Maxwell operator for dielectrics

If the charge density is null and if the system is not magnetic the Maxwell equations for time periodic

solutions reduce to the differential system
r� ðe�1r� HÞ ¼ x2

c2
H ; ð1Þ

r � H ¼ 0; ð2Þ
where H : R3 ! C3 is the complex magnetic field (Hx,Hy,Hz), e is the permittivity and x is the pulsation.
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Let H denote the Hilbert space of magnetic fields with the norm
Z
R3

ðjHxj2 þ jHy j2 þ jHzj2Þdv:
Then H can be split as a direct sum H ¼ Hk �H? with
Hk ¼ fH 2 H : k � eH ðkÞ ¼ 0 a:e:g;
H? ¼ fH 2 H : k � eH ðkÞ ¼ 0 a:e:g;
where HðxÞ ¼
R
eikx eH ðkÞ and H? is the subspace of transverse fields which satisfy the transversality

condition (2).

Let H0 � H denote the dense subspace of magnetic fields with square integrable first and second deriv-

atives. Following the above decomposition of H, we have the direct sum H0 ¼ H0;k �H0;?.

The curl operator $· is essentially self-adjoint on H0. Its kernel is H0;k and its range is dense in H?.
Thus, $· is essentially self-adjoint on H0;?.

In the differential systems (1) and (2), the operator e�1 sandwiched between two curl operators can be

replaced by P^e
�1P^ where P^ is the orthogonal projector on H?.

Consequently, the differential system can be understood as the eigenvalue problem associated to the

Maxwell operator
H ¼ r� P?e
�1P?r�; ð3Þ
which is essentially self-adjoint and positive on H0;?.

This construction is straightforward for sufficiently regular e and can be readily extended to positive

discontinuous e.

2.2. The Maxwell operator in periodic media

We assume now that e is periodic with respect to a three-dimensional lattice L and that e(x) 2 [e1, e2] with
0 < e1 6 e2 < 1.

The dual lattice is denoted L* and B is the Brillouin zone in reciprocal space. The Hilbert spaceH can be

decomposed as a continuous sum of Hilbert spaces [9]
H �
Z �

B
HðkÞdk; ð4Þ
where each Hilbert space HðkÞ is the space of L-periodic magnetic fields. The corresponding Block decom-
position of a field H 2 H is given by
HðxÞ ¼
Z
B
dk eikxhkðxÞ;
where
hkðxÞ ¼
X
Q2L�

eiQ�x eH ðk þ QÞ ¼ V

ð2pÞ3
X
t2L

e�ikðxþtÞHðxþ tÞ:
V is the volume of the unit cell of L and the fields hk are L-periodic.

The Hermitian product in H may be expressed as follows:
ðH 0;HÞ ¼
Z
B
dkðh0k; hkÞ;

ðh0k; hkÞ ¼
Z
U:C:

dxðh0kðxÞ; hkðxÞÞ:
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Similarly, the Hilbert space H? can be decomposed asZ

H? �

�

B
H?ðkÞdk; ð5Þ
where each Hilbert space H?ðkÞ is the space of L-periodic magnetic fields hkðxÞ ¼
P

Qe
iQxhk;Q whose Fou-

rier components satisfy the transversality condition
ðk þ QÞ � hk;Q ¼ 0 8Q 2 L�:
The curl operator $· can be decomposed by the direct integral decomposition (5)
r� ¼
Z �

B
Bk dk;

ðBkhkÞQ ¼ iðk þ QÞ � hk;Q 8Q 2 L�:

ð6Þ
Thus, the Fourier components hk,Q are scaled by i|k + Q| and rotated by p/2 in the polarization plane

orthogonal to k + Q. The corresponding eigenvalues of Bk are therefore ±|k + Q| for Q 2 L*. Then the spec-

trum of Bk is isolated from 0 if k 6¼ 0.

The operator P^e
�1P^ can be decomposed by the direct integral (5)
P?e
�1P? ¼

Z �

B
Ak dk
where Ak is the multiplication by e�1 followed by the projection P^,k onto H?ðkÞ, i.e.
ðP?;khÞQ ¼ hQ � ðk þ Q; hQÞ
ðk þ Q; k þ QÞ ðk þ QÞ: ð7Þ
The Maxwell operator H is thus decomposed as
H ¼
Z �

B
Hk dk ¼

Z �

B
BkAkBk dk: ð8Þ
2.3. The eigenvalue problem

The spectrum of H is the union of the spectra of the Hk�s for k 2 B. The operators Bk have compact

inverse for k 6¼ 0 as follows from Eq. (6) (for k = 0 this remains true since we restrict B0 to the orthog-

onal of its obvious kernel). The operators Ak�s are strictly positive (0 < e1 6 Ak 6 e2 < 1). Thus, H�1
k is

compact as product of compact and bounded operators. Its spectrum is a set of isolated positive eigen-

values x2
i(k)c

�2 (with finite multiplicity) with x2
i(k)! 1 as i ! 1. Furthermore, these operators are

norm-continuous (in the resolvent sense) with respect to k. Thus, the spectrum of H is the countable

union S = [ibi of the bands bi = [k2B x2
i(k)c

�2. Gaps are open if these bands do not cover the whole

positive line Rþ.

One expects the bands to overlap for large frequencies so that the opening of gaps only concerns the

lower part of the spectrum. The gap problem reduces to solving the eigenvalue equation
BkAkBkhi ¼
x2

i ðkÞ
c2

hi; ð9Þ
for the few first i corresponding to the lowest eigenvalues.
2.4. The 2D Maxwell problem

One may consider particular cases where e is invariant along the z-axis and is periodic in the horizontal
plane. The translation lattice L and the reciprocal lattice L* are two dimensional. In this case, the 3D Max-

well operator cannot have gaps and the spectrum is Rþ.
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However, it makes sense to consider the propagation parallel to the horizontal plane (kz = 0). In this

case, the operators BkAkBk preserve the two subspaces TE (hk = (0,0,hz)) and TM (hk = (hx,hy, 0),

(k + Q) Æ hk,Q = 0). In either cases and for each Q 2 L*, the polarization hk,Q is one dimensional.

Furthermore, in the TM mode, the vectors Bkhk are parallel to the z-axis. The vectors e�1Bkhk are still

parallel to the z-axis and thus automatically satisfy the transversality condition. Thus, the Maxwell oper-
ators for TM modes may be rewritten as
Hk ¼ Bke
�1Bk: ð10Þ
3. Numerical framework

3.1. The inverse Maxwell operator

As shown by (6) the operators Bk are almost diagonal in the Fourier representation hk,Q. On the other

hand, the operator e�1 is diagonal in direct space.
As in previous works [7], we solve the eigenvalue problem in Fourier space. The operator e�1 is imple-

mented as the product of an inverse FFT, a diagonal multiplication and a direct FFT. This provides a fast

algorithm to compute the action ofHk�s avoiding a matrix representation. This allows to handle 3D cases of

size of order 100 · 100 · 100.

The problem is to find an efficient algorithm to compute the lowest eigenvalues (and eigenvectors) of the

Hk�s.
The operator Hk has compact resolvent, and except for k = 0, the inverse operator H�1

k ¼ B�1
k A�1

k B�1
k is

compact. The goal now is to compute the largest eigenvalues of H�1
k . As mentioned above, B�1

k is easily
calculated: for h 2 H?ðkÞ and k 6¼ 0 we have
ðB�1
k hÞQ ¼ i

ðk þ QÞ2
ðk þ QÞ � hQ:
For k = 0, the subspace {h :hQ = 0,Q 6¼ 0} is invariant by B0 and H0. It corresponds to the eigenspace for

the trivial eigenvalue 0. On the orthogonal subspace {h :h0 = 0}, B0 has a compact inverse given by
ðB�1
0 hÞQ ¼ i

Q2
Q� hQ; ðQ 6¼ 0Þ: ð11Þ
However, the computation of the inverse of Ak = P^,ke
�1P^,k requires more attention.

In the case of TM modes (see (10)), e commutes with P^,k and we simply get A�1
k ¼ P?;keP?;k ¼ e.

For TE modes and in the 3D cases, e does not commute anymore with P^,k and A�1
k 6¼ P?;keP?;k.

Strictly speaking an inverse problem Akx = b should be solved at each step of the iteration method pre-
sented in the next section. Notice that this inverse problem is regular since the operator Ak is positive,

bounded and satisties 0 < e�1
2 6 Ak 6 e�1

1 . We show in Section 4 that an approximate inverse of Ak

computed by the Conjugate Gradient Method may be used. The accuracy then depends on the number

of steps, provided that the n · n matrix associated to Hk is computed exactly on the approximate

Krylov subspace.
3.2. The Lánczos method with compact operators

The Lánczos method [10] is well-suited to compute the largest eigenvalues of a compact symmetric oper-

ator. Convergence estimates for the largest eigenvalue of a symmetric matrix can be found for instance in

[2]. However, we are also interested in the next few eigenvalues.
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The following Theorem gives a posteriori estimates on the convergence of the computed eigenvalues with

respect to the dimension of the Krylov space and to the index of the eigenvalue. This theorem can be

deduced from Sections 12.4 and 12.5 in [3], we give here a short proof adapted to our context.

Theorem 1. Let T be a positive symmetric compact operator and let k1 > k2 > � � � P 0 denote the sequence of

the distinct eigenvalues of T. Let Ei denote the eigenspace associated to the eigenvalue ki and let Pi denote the

corresponding projector. Let x denote a unit vector. Then for, n > p P 0 and 1 6 r 6 p, the Krylov subspace

K = {x,Tx, . . .,Tn� 1x} contains a unit vector ur such that
kðI � P rÞurk < tanurdr; ð12Þ
where
dr ¼
1

Tn�pð2kr=kpþ1 � 1Þ
Yp
i¼1
i6¼r

ki
kr � ki

����
����; ð13Þ
Tn is the nth Tchebichev polynomial and ur = arccos(iPrxi).

Proof. Choose r 2 {1, . . .,p} and let
y ¼ Tn�pð2T =kpþ1 � 1Þ
Yp
i¼1
i6¼r

ðT � kiÞx:
Then y belongs to the Krylov space K and satisfies Piy = 0 for i 2 {1, . . .,n} and i 6¼ r. If Pp ¼ P 1 þ � � � þ Pp

denotes the projector on the subspace E1 ¯ � � �¯ Ep we have
Ppy ¼ Tn�pð2kr=kpþ1 � 1Þ
Yp
i¼1
i 6¼r

ðkr � kiÞP rx;

ðI �PpÞy ¼ Tn�pð2T=kpþ1 � 1Þ
Yp
i¼1
i 6¼r

ðT � kiÞðI �PpÞx:
It follows that Ppy 2 Er. We set cosur = iPrxi and sinur = i(I � Pr)xi and we get
kPpyk ¼ cosurTn�pð2kr=kpþ1 � 1Þ
Yp
i¼1
i 6¼r

jkr � kij;

kðI �PpÞyk 6 sinur

Yp
i¼1
i 6¼r

ki;
since jTn�pðxÞj 6 1 on [�1,1]. Then (12) follows with ur = y/iyi. h

The following corollary shows that if an eigenvector of T is well approximated in the Krylov space K,

then the corresponding eigenvalue is close to an eigenvalue of the n · n restriction of T to K.

Corollary 1. With hypotheses and notations of Theorem 1, let PK denote the projector on the Krylov subspace

K and let TK = PKTPK. For 1 6 r 6 n, the n · n operator TK has an eigenvalue l such that
jl� krj 6 k1 tanurdr:
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Proof. Let ur be defined as in Theorem 1. Then
ur ¼ vr þ wr
with iwri 6 tanurdr and Tvr = krvr. Then
ðT K � krÞur ¼ PKTur � krur ¼ PKTwr þ krðPKvr � urÞ ¼ PKTwr � krPKwr ¼ PKðT � krÞwr:
Therefore
ður; ðT K � krÞ2urÞ ¼ kðT K � krÞurk2 6 k21tan
2ur d

2
r :
Thus, the operator (TK � kr)
2 has an eigenvalue bounded by k21tan

2urd
2
r and the operator TK � kr has an

eigenvalue of modulus bounded by k1tanurdr. h

Formula (13), however, is rather complicated and heavily depends on the distribution of eigenvalues. We

discuss the behavior of dr in the next section.

In order to obtain the band structure of the photonic crystal, we also need to compute the dimensions of

the eigenspaces Er. Strictly speaking, this may be achieved by randomly varying the initial condition x, as

long as the resulting eigenvectors are linearly independent. The operator T of Theorem 1 stands for the

inverse operator
H�1
k ¼ B�1

k A�1
k B�1

k ;
where k is a Block vector in the Brillouin zone. In this case, since degeneracies are expected to be excep-
tional with respect to k they can be easily identified by continuity.

3.3. Estimates of the convergence in a simple case

We consider now the convergence of the Lánczos method for the operator T ¼ H�1
k . In this case, the

eigenvalues kr ! 0 as r ! 1 like r�2 in 1D, like r�1 in 2D and like r�2/3 in 3D.

We assume now that kr = r�1. Even in this simple case, the estimation of d1 is not obvious
d1 ¼
1

Tn�pð2p þ 1Þ
1

ðp � 1Þ! �
1

4p

� �n�p
1

ppe�p
:

Fig. 1. Upper bounds for d1, d2, d4 and d8 as function of the dimension n of the Krylov space for kr = 1/r.
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The best estimate of d1 is obtained for p = n/ln(4e) and we get
d1 6
e lnð4eÞ

4n

� �n

:

Therefore, the method is super-convergent with respect to n (for instance d1 < 10�10 for n = 12).

For subsequent eigenvalues the best estimate for dr is complicated. Fig. 1 plots the best p estimates for d1,
d2, d4 and d8 as function of the dimension n of the Krylov space.

In fact, the asymptotics for large n is not relevant since the accuracy is limited by the computer precision

and cannot be smaller than 10�15 (double precision). It is crucial to know the minimum size of the Krylov

space needed to reach this precision for all requested eigenvalues. One can show that this minimum size n is

sub-linear with respect to r (for the simple 2D model kr = 1/r) and the 2D simulations discussed below show

that n [ 4r.
4. Computations in 2D

4.1. The photonic crystal

In this section, we consider a 2D honeycomb lattice of infinite vertical rods. The 2D triangular lattice

is generated by a1 = (
p
3/2,1/2) and a2 = (

p
3/2,�1/2). The honeycomb lattice is obtained by centering

two cylinders at 1
3
ða1 þ a2Þ and � 1

3
ða1 þ a2Þ, respectively. The reciprocal lattice is generated by b1 and

b2 such that ai Æ bj = dij. The dielectric permittivity of the rods is set to � = 5.36 and the filling factor is

set to 0.4. The corresponding control file to be used with the MIT Photonic-Bands (MPB) package
[11] thus begins with:

(set!geometry-lattice (make lattice (size 1 1 no-size)
(basis1 (/ (sqrt 3) 2) 0.5)

(basis2 (/ (sqrt 3) 2) �0.5)))

(set!geometry
(list
(make cylinder

(center (/3) (/3) 0) (radius 0.234803938515)

(height infinity)

(material (make dielectric (epsilon 5.36)))

)

(make cylinder
(center (/-3) (/-3) 0) (radius 0.234803938515)

(height infinity)

(material (make dielectric (epsilon 5.36)))

)

)

)

We now present calculations of TM and TE modes and discuss the convergence of the eigenvalues with
respect to the dimension n of the Krylov space (see Theorem 1).
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4.2. Example of TM modes in the honeycomb lattice

As discussed above, the calculation of TM modes is simplified since the inversion of the Maxwell oper-

ator Hk is straightforward. The standard Lánczos method may be applied: a Krylov space K is constructed

by iteration of H�1
k applied to an initial magnetic field h. Then the matrix elements of H�1

k are computed
in K.

Fig. 2 plots the relative errors for four eigenvalues k1(n), k2(n), k4(n) and k8(n) with respect to the dimen-

sion of the Krylov space which runs from n = 8 to n = 30. The Block vector is k = 0.3b1. Notice that the

largest eigenvalue k1 corresponds to the first mode of the Maxwell operator.

Corollary 1 shows that j l
kr
� 1j 6 k1

kr
tanurdr. Thus, Fig. 2 should be similar to Fig. 1 up to the factor

tanur. This factor must be much larger than 1 (at least for most eigenvalues). Thus, the values in Fig. 2

should be larger than in Fig. 1. At the opposite, the values in Fig. 2 are much smaller and the computer

double precision is obtained for n � 4r, showing that the upper bounds of Fig. 1 are far from optimal.
In fact Theorem 1 only provides upper bounds and the distribution of the largest eigenvalues certainly

differs from the asymptotic free spectrum kr = 1/r.

Fig. 3 illustrates the convergence of k6(n) as a function of the dimension of the Krylov space (n = 8 to

n = 21) for three sizes 64 · 64, 256 · 256 and 1024 · 1024. The Block vector is k = 0.3b1.

The roughness of the curves reflects the fluctuations of the calculated eigenvalues with respect to the ini-

tial conditions: each eigenvalue is computed with a different random initial magnetic field. As expected from

Theorem 1 the convergence is independent of the size of the sample.

Fig. 4 plots the dispersion curves for the frequencies xa=2pc ¼ 1=ð2p
ffiffiffi
k

p
Þ of the six first modes of Hk

where k runs over the path {C,M,K,C} of the Brillouin zone.

4.3. Example of TE modes in the honeycomb lattice

As mentioned in Section 3, the iteration of the inverse Maxwell operator H�1
k requires the inversion of

the operator Ak = P^,ke
�1P^,k. An approximate inverse may be computed by a standard conjugate gradient

method and the precision therefore depends on the number of performed steps. An approximate Krylov
Fig. 2. TM modes. Relative errors for k1, k2, k4 and k8 as function of the dimension n = 8, . . ., 30 of the Krylov space. The sample is

128 · 128.



Fig. 4. TM modes. Frequencies of the first six modes. The dimension of the Krylov space is set to 20 and the size of the sample is

128 · 128.

Fig. 3. TM modes. Relative errors for k6 as function of the dimension n = 8, . . ., 21 of the Krylov space and for different sizes of the

sample.
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space K is constructed by iteration of the approximate inverse of H�1
k applied to an initial magnetic field h.

Then the exact matrix elements of Hk are computed in K. A sketch of the algorithm is then:

Start with a random unit vector v0 and assume that the approximate Krylov space Km contains m vectors

v0, . . .,vm� 1 such that (vi,vj) = dij. The next vector vm is obtained by the following algorithm:

	 compute ym ¼ B�1
k vm�1,

	 solve Akxm = ym by some steps of conjugate gradient algorithm,
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	 compute zm ¼ B�1
k xm,

	 the space Km + 1 is defined by the basis {v0, . . .,vm� 1,zm}, and vm is obtained by orthonormalization of

this basis.

Finally, k�s are obtained as the inverse of the eigenvalues of the matrix mij = (vi,Hkvj).
Fig. 5 displays the convergence of four eigenvalues k1(n), k2(n), k4(n) and k8(n), with respect to the dimen-

sion of the Krylov space which runs from n = 8 to n = 30. The size of the sample is 128 · 128 and the Block

vector is k = 0.3b1. The number of steps of the conjugate gradient algorithm is set to 6.
Fig. 5. TE modes. Relative errors for k1, k2, k4 and k8 as function of the dimension n = 8, . . ., 30 of the Krylov space. The sample is

128 · 128 and the number of steps of the conjugate gradient algorithm is 6.

Fig. 6. TE modes. Relative errors for k6 as function of the dimension n = 8, . . ., 21 of the Krylov space and for different sizes of the

sample.



Fig. 7. TE modes. Relative errors for k6 as function of the dimension n = 6, . . ., 25 of the Krylov space and for different number of steps

in the conjugate gradient algorithm to compute A�1
k .

Fig. 8. TE modes. Frequencies of the first six modes. The dimension of the Krylov space is set to 20 and the size of the sample is

128 · 128. The number of steps of the conjugate gradient algorithm is 8.
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Fig. 6 displays the convergence of k6(n) as a function of the dimension of the Krylov space (n = 8 to

n = 21) for three sizes 64 · 64, 256 · 256 and 1024 · 1024 of the sample. The Block vector is k = 0.3b1
and the number of iterations of the conjugate gradient algorithm is 6. The random initial magnetic fields

are different for each size and each n. As expected from Theorem 1, the convergence is independent of

the size of the sample.

Fig. 7 illustrates the convergence of k6(n) as a function of the dimension of the Krylov space (n = 6 to

n = 25) for three different numbers of steps in the conjugate gradient algorithm (2, 4 and 8) for the compu-

tation of A�1
k .
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As mentioned above for the TM modes, the optimal Krylov size n � 4r seems correct.

Fig. 8 plots the dispersion curves for the frequencies xa=2pc ¼ 1=ð2p
ffiffiffi
k

p
Þ of the six first modes of Hk

where k runs over the path {C,M,K,C} of the Brillouin zone.
5. Conclusion

We have shown that the Lánczos method applied to the inverse Maxwell operator provides a super-

convergent algorithm for the computation of the lowest eigenmodes of the Maxwell operator in a periodic

dielectric medium. This method may be extended to more general cases where one needs to compute the

lowest eigenvalues of an unbounded operator with compact resolvent, for instance the one-electron Schrö-

dinger operator with periodic potential.
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